

U.S. Department of Energy Energy Efficiency and Renewable Energy

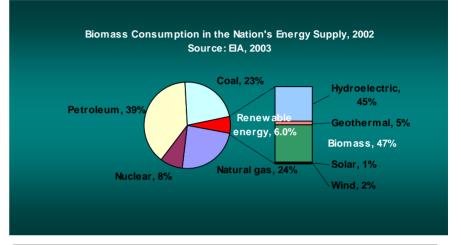
biomass program

Biomass as a Feedstock for a Bioenergy and Bioproducts Industry:

The Technical Feasibility of a Billion-Ton Annual Supply

DOE/USDA Biomass Feedstock Gate Review Meeting March 14-16, 2005

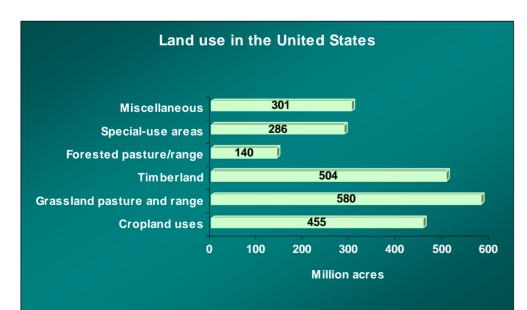
Oak Ridge National Laboratory USDA Agricultural Research Service USDA Forest Service


- To determine whether the land resources of the U.S. are capable of producing a sustainable supply of biomass sufficient to displace 30% of the country's present petroleum consumption – approximately equivalent to one billion dry tons.
- Goal was set by a joint advisory committee to the DOE and USDA as a vision for making a major contribution to U.S. energy needs
 - 5% of the nation's power
 - 20% of the nation's transportation fuels
 - 25% of the nation's chemicals & materials from biobased products.

What Is Current Biomass Consumption?

Biomass accounts for approximately:

- 13% of renewably generated electricity,
- nearly all (97%) of industrial renewable energy use,
- nearly all renewable energy use in residential and commercial sectors (84% and 90%, respectively), and
- somewhat more than 2.5% of transportation fuel use.



Biomass Resource	Million dry tons/yr
Forest products industry	
Wood residues	44
Pulping liquors	52
Urban wood & process wastes	35
Fuelwood (residential/commercial)	24
Electric utilities	10
Biofuels	18
Bioproducts	6
Total	190

• About one-half of the land in the contiguous U.S.

- Forestland resources -- 504 million acres of timberland, 91 million acres of other forestland
- Agricultural resources -- 342 million acres cropland, 39 million acres idle cropland, 68 million acres cropland pasture

Forest resources

- Logging residues
- Forest thinnings (fuel treatments)
- Fuelwood
- Primary wood processing mill wastes
- Secondary wood processing mill wastes
- Pulping liquors (black liquor)
- Urban wood wastes

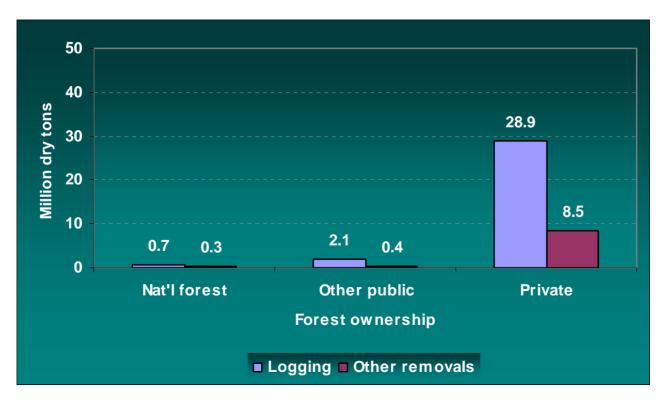
Agricultural resources

- Crop residues
- Grains
- Perennial grasses
- Perennial woody crops
- Animal manures
- Food/feed processing wastes
- MSW and landfill gases

- Forest resource estimates based on analysis of existing resources, uses, and trends in the demand for forest products
 - Managed less intensively than croplands or not suited for intensive management
 - Expected to provide multiple-use benefits (e.g., wildlife habitat, recreation, and ecological and environmental services)
- Agricultural resource estimates based on scenarios extrapolated from current food/feed trends and R&D
 - Active cropland managed intensively on year-to-year basis
 - Includes perennial crops, such as grasses and woody crops

Forest resource analysis utilizes USDA/Forest Service databases and expert opinion

- Forest Inventory and Analysis database
- Timber Product Output database
- Fuel Treatment Evaluator (an assessment tool used to identify and evaluate forest stands with accumulated biomass – Healthy Forest Restoration Act)
- Resources Planning Act analyses (periodic timber assessment with projections to 2050)
- Forest Products Laboratory data



Residues from logging, cultural operations & clearing of timberlands

- 70 million dry tons of logging and other removal residues are generated annually
- Current availability is about 42 million dry tons/year
- Collected concurrently with logging/cutting operations
- 50% to 65% of biomass is recoverable (public vs private lands)
- All recovered material for biomass uses
- Estimated to increase to 64 million dry tons/year (mid-20th century)

Residues from commercial logging activities, silvicultural operations & clearing of timberlands

Residues generated from fuel treatment operations on timberland and other forestland

- Timberlands
 - Fuel Treatment Evaluator used to identify biomass requiring removal
 - Recovery of 85% of the identified biomass
 - Accessibility 60% for public lands and 80% for private lands
 - Biomass fraction 30% (70% conventional forest products)
 - Collection cycle 30 years

- Other forestlands
 - Forest Inventory Analysis database used to identify biomass (50% removal)
 - Recovery of 85% of the identified biomass
 - Accessibility 60% for public lands and 80% for private lands
 - Biomass fraction 90%
 - Collection cycle 30 years

Other forest resources included in analysis

- Fuelwood (residential/commercial space heating applications, electric power)
- Forest products industry (primary and secondary mill residues, pulping liquors)
- Urban wood wastes
- Forest growth and increase in demand for forest products

Fuelwood

- Wood harvested directly from forestlands
- Residential and commercial sectors for space heating (24.4 million dry tons)
- Electric power sector (10.1 million dry tons)
- EIA data consistent with Forest Service Timber Product Output data

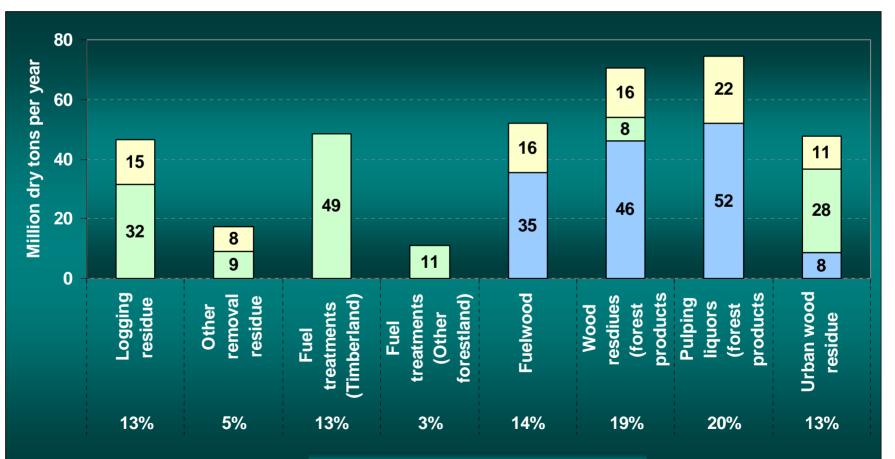
Forest products industry processing residues

- Primary mill residues (bark and coarse & fine residues): 92 million dry tons generated 43% used for on-site energy, 41% used for fiber, 14% other products (e.g., mulch), and 2% unused
- Secondary wood residues (shavings, sawdust, cut-offs, etc.): 16 million dry tons generated, 6 million dry tons available
- Pulp and paper mills (black liquor): 52 million dry tons

Urban Wood Wastes

- Wood (finished wood products) and yard & tree trimmings from MSW
 - Landfill survey data, composition sampling, population driven
 - Material destined for MSW landfills
- Construction, remodeling and demolition waste
 - Affected by economic activity (e.g., housing starts)
 - Material destined for C&D landfills
- Contamination/commingling with non-wood products is problematic

Waste source	Total waste generated	Recovered, energy & unusable	Available
Wood (MSW)	13.2	7.3	6.0
Yard trimmings	9.8	8.0	1.7
Construction waste	11.6	3.0	8.6
Demolition waste	27.7	16.1	11.7
Total	62.3	34.4	28.0



Forest growth and demand

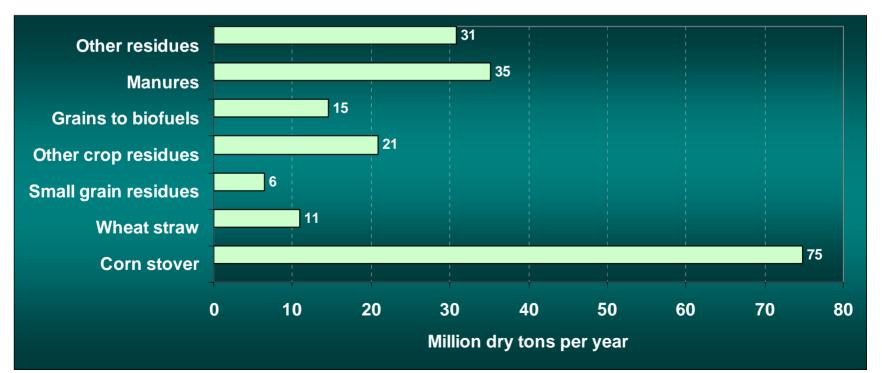
- Future supply and demand prospects (RPA assessment)
- Projected increase in logging and other removal residue increased residue recovery, more efficient logging operations
- Increase in the demand for wood and paper products (mill residue and black liquor)
- Increased use of finished wood products and increased recycling
- Increased demand for fuelwood
- Total forest growth and demand 89 million dry tons

The sustainable forest resource potential is nearly 370 million dry tons annually

■ Existing use ■ Unexploited ■ Growth

The sustainable forest resource potential --370 million dry tons per year

Million dry tons per year


Agricultural resource analysis takes into account a number of factors

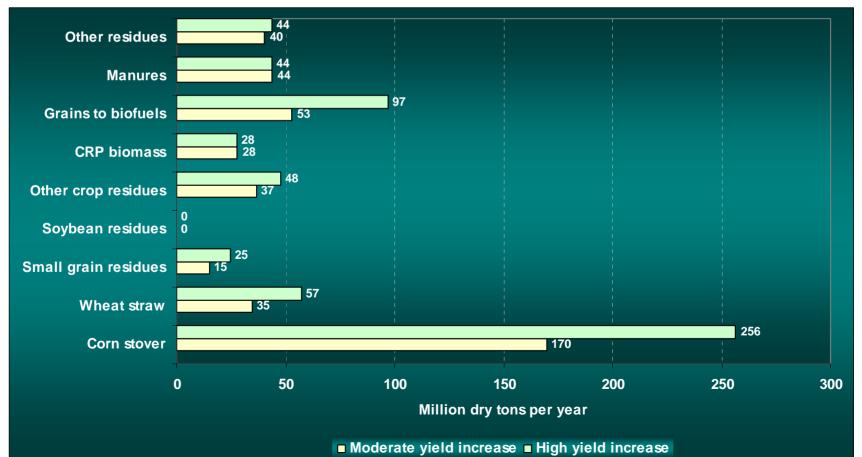
- Approach ("what if") based on available information & expert opinion on potentials (e.g., crop yields, equipment efficiency, etc.)
- Crop yields (annual and perennial crops)
 - 15% to 50% for annual crops
 - 5 to 8 dry tons/acre/year for perennial crops
- Residue to grain ratios
 - Vary by crop; only soybean ratios change in scenarios
- Harvest/collection efficiency
 - 40%, 60%, 75%
- Tillage practices (no-till)
 - Current levels up to 100% no-till
- Allocation of cropland acres
 - Perennial crops accommodated with reductions in active cropland, idle cropland, and cropland pasture

Current availability of biomass from agricultural lands

- Total current availability is approximately 194 million dry tons per year
- Slightly more than one-fifth is currently used
- Corn stover is largest source of agriculture-derived biomass

How were the variation factors selected?

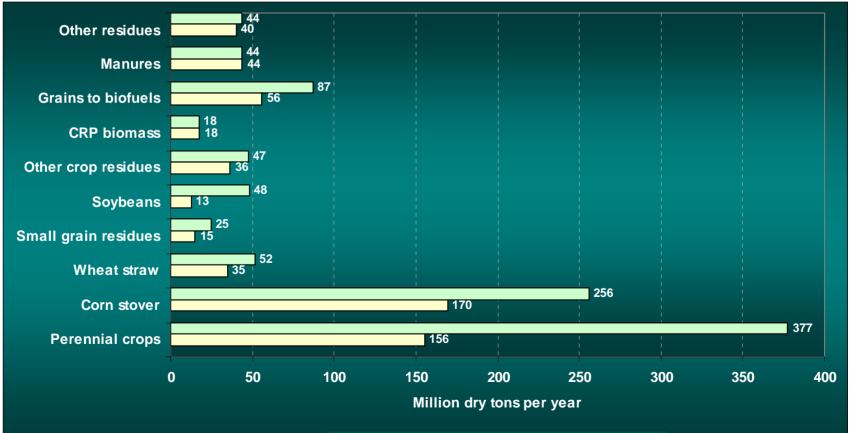
- Used current trends, research directions and previous analysis results such as:
 - 30 yr average corn yield increase at 1.7 bu/ac
 - Research to develop soybeans with higher forage content (higher residue to grain ratio)
 - Research to develop more efficient and one-pass harvesting equipment
 - Increasing levels of no-till management
 - POLYSYS analysis indicating potential acreage available to energy crops under various market conditions.
- Consultation with USDA scientists



Availability of biomass under increased crop yields and technology changes -- no land use changes & perennial crops

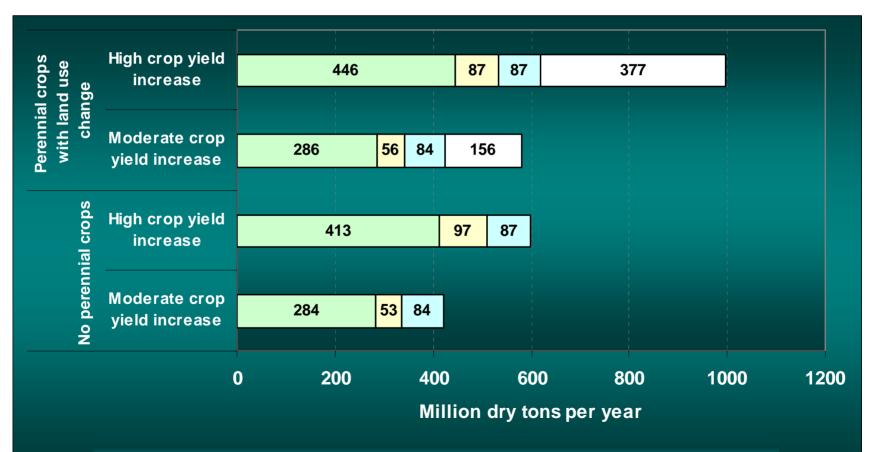
- Total availability ranges from 420 to 597 million dry tons/year at yield increases between 25 and 50% for corn and other grains & between 15 and 30% for other crops
- Changes in tillage practices (170 to 340 million acres no-till), residue to grain and seed ratios, and residue collection technology and equipment (60 to 75%) are required

Availability of biomass under increased crop yields and technology changes -- no land use changes & perennial crops (cont.)



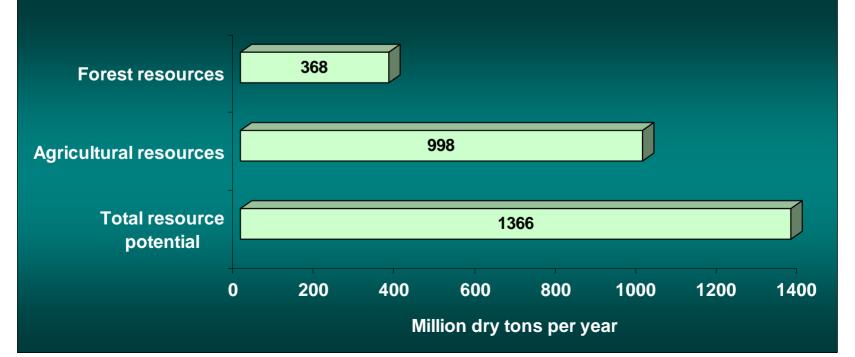
Availability of biomass under increased crop yields, technology changes, and inclusion of perennial crops

- Total availability ranges from 581 to 998 million dry tons/year at yield increases between 25 and 50% for corn and other grains & between 15 and 30% for other crops
- Changes in tillage practices (170 to 340 million acres no-till), residue to grain and seed ratios, and residue collection technology and equipment (60 to 75%) are also required
- The allocation of some active cropland, idle cropland, and cropland pasture is required


Availability of biomass under increased crop yields, technology changes, and inclusion of perennial crops (cont.)

■ Moderate yield increase ■ High yield increase

Sustainable agricultural resource potential exceeds 998 million dry tons



■ Crop residues ■ Grains to biofuels ■ Process residues ■ Perennial crops

Are there sufficient resources to meet 30% of the country's petroleum requirements?

- Land resources can sustainably supply more than 1.3 billion dry tons annually & still meet food, feed, and export demands
- Will require R&D, policy change, stakeholder involvement
- Required changes are not unreasonable given current trends

